Interferometric near-infrared spectroscopy (iNIRS): performance tradeoffs and optimization
نویسندگان
چکیده
Interferometric near-infrared spectroscopy (iNIRS) is a time-of-flight(TOF-) resolved sensing modality for determining optical and dynamical properties of a turbid medium. iNIRS achieves this by measuring the interference spectrum of light traversing the medium with a rapidly tunable, or frequency-swept, light source. Thus, iNIRS system performance critically depends on the source and detection apparatus. Using a current-tuned 855 nm distributed feedback laser as the source, we experimentally characterize iNIRS system parameters, including speed, sensitivity, dynamic range, TOF resolution, and TOF range. We also employ a novel Mach-Zehnder interferometer variant with a multi-pass loop to monitor the laser instantaneous linewidth and TOF range at high tuning speeds. We identify and investigate tradeoffs between parameters, with the goal of optimizing performance. We also demonstrate a technique to combine forward and backward sweeps to double the effective speed. Combining these advances, we present in vivo TPSFs and autocorrelations from the mouse brain with TOF resolutions of 22-60 ps, 36-47 dB peaksidelobe dynamic range, 4-10 μs autocorrelation lag time resolution, a TOF range of nanoseconds or more, and nearly shot noise limited sensitivity. © 2017 Optical Society of America OCIS codes: (030.1640) Coherence; (140.3600) Lasers, tunable; (140.3490) Lasers, distributed-feedback; (160.4760) Optical properties; (170.7050) Turbid media; (170.4500) Optical coherence tomography; (290.4210) Multiple scattering; (170.6920) Time-resolved imaging; (170.6480) Spectroscopy, speckle. References and links 1. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977). 2. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014). 3. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994). 4. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4407–4424 (2011). 5. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014). 6. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010). 7. N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured noninvasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014). 8. V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014). 9. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014). Vol. 25, No. 23 | 13 Nov 2017 | OPTICS EXPRESS 28567 #296359 https://doi.org/10.1364/OE.25.028567 Journal © 2017 Received 8 Jun 2017; revised 18 Aug 2017; accepted 22 Aug 2017; published 3 Nov 2017 10. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012). 11. M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4452–4469 (2011). 12. D. Borycki, O. Kholiqov, S. P. Chong, and V. J. Srinivasan, “Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media,” Opt. Express 24(1), 329–354 (2016). 13. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media,” Optica 3(12), 1471–1476 (2016). 14. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo,” Opt. Lett. 42(3), 591–594 (2017). 15. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997). 16. S. M. Kazmi, R. K. Wu, and A. K. Dunn, “Evaluating multi-exposure speckle imaging estimates of absolute autocorrelation times,” Opt. Lett. 40(15), 3643–3646 (2015). 17. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988). 18. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004). 19. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003). 20. S. W. C. Larry, A. Coldren, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (2012). 21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). 22. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). 23. J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica 3(9), 1006–1013 (2016). 24. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067– 2069 (2003). 25. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005). 26. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast singlephoton gating,” Phys. Rev. Lett. 100(13), 138101 (2008). 27. T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015). 28. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). 29. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011). 30. A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014). 31. M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017). 32. “nanoplus | Distributed Feedback Lasers: 760 nm 830 nm,” http://nanoplus.com/en/products/distributedfeedback-lasers/distributed-feedback-lasers-760-nm-830-nm/. 33. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014). 34. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008). 35. Laser Institute of America, ANSI Z136.1, American National Standard for Safe Use of Lasers (n.d.). 36. T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016). Vol. 25, No. 23 | 13 Nov 2017 | OPTICS EXPRESS 28568
منابع مشابه
Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media.
We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is ...
متن کاملReflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo.
Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from supe...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملThe Nonspherical Shape of Betelgeuse in the Mid-infrared
Three-telescope interferometric observations from the Infrared Spatial Interferometer (ISI) are reported at spatial frequencies that resolve the size and shape of the star Betelgeuse (a Ori) at a wavelength of 11.15 mm with a bandwidth of 0.18 cm . The data include closure phase measurements, the first such measurements of a stellar 1 disk in the mid-infrared. The data indicate a clear asymmetr...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017